Содержание

Джеймс Грегори






   Джеймс Грегори (англ. James Gregory, ноябрь 1638, Драмоук — октябрь 1675, Эдинбург) — шотландский математик и астроном. Наряду с Валлисом и Барроу — один из основоположников математического анализа, предшественник Ньютона, который высоко ценил Грегори и называл его в числе своих учителей и вдохновителей.

Биография




   Джеймс Грегори родился в шотландской деревне Драмоук (англ. Drumoak, Абердиншир), в семье протестантского священника. Его мать принадлежала к известному клану Андерсон. Учился в Абердине, затем закончил Сент-Эндрюсский университет. Интерес к математике, возможно, проявился у него под влиянием дяди, ученика Виета.

   В 1664 году Грегори приехал в Лондон, познакомился с Гуком, Джоном Коллинзом и другими видными учёными. В 1664—1668 гг. совершил путешествие в Италию, попутно расширяя свой математический кругозор. Там он ознакомился, в частности, с методом неделимых Кавальери и начал собственные исследования в области применения бесконечно малых.

   Важнейшие математические работы Грегори начинаются в 1667 году. Он подготовил статью по математическому анализу, которую послал Гюйгенсу. Тот не ответил, но опубликовал в своём журнале обзор статьи, где часть результатов объявил ошибочными, а относительно верных результатов объявил, что он открыл их раньше, чем Грегори. В дальнейшем Грегори воздерживался от публикации части наиболее выдающихся своих достижений, и они были обнаружены только после его смерти.

   В Англии труды Грегори сразу получили высокую оценку. В 1668 году он был избран членом Королевского общества. По ходатайству президента Общества король Карл II учредил в Сент-Эндрюсском университете кафедру математики специально для Грегори, который и занял её в конце 1668 года.

   В 1669 году Грегори женился на вдове Мэри Джеймсон (англ. Mary Jamesone), по первому мужу: Бернет, дальней родственнице его матери. У них родились сын и две дочери.

   В Сент-Эндрюсе Грегори провёл 6 лет. В 1674 году он перешёл в Эдинбургский университет, однако спустя год скончался.

   В честь учёного назван кратер Gregory на Луне.


Научная деятельность




   В 1663 году 25-летний Грегори обратил на себя внимание, опубликовав книгу Optica Promota, где впервые описал конструкцию зеркального телескопа. Он обратился к лондонским мастерам, пытаясь заказать изготовление прибора, однако не добился успеха. Первый практически пригодный рефлектор изготовил Ньютон, у которого схема прибора была более простой, чем у Грегори. Тем не менее 10 лет спустя Роберт Гук сумел построить телескоп по схеме Грегори. Идея Грегори используется и в наши дни. В этой же книге Грегори предложил новый метод измерения расстояния от Земли до Солнца, вскоре с успехом использованный Галлеем.

   В 1667 году, проживая в Падуе, Грегори обратился к математическому анализу. В работах «Истинная квадратура круга и гиперболы» (Vera Circuli et Hyperbolae Quadratura), «Общая часть геометрии» (Geometriae pars universalis) и др. он опубликовал несколько разложений в бесконечные ряды, в том числе для синуса, косинуса, логарифма, логарифмов тригонометрических функций, обратных тригонометрических функций. Он показал, как использовать эти разложения для нахождения площадей, а также объёмов тел вращения. Независимо от Барроу Грегори сформулировал основную теорему анализа и свободно оперировал тем, что позднее получило название «ряд Тейлора» (1671).

   Около 1671 года Грегори открыл разложение в ряд арктангенса, которое двумя столетиями ранее было известно индийским математикам:

,
где . Эта формула и её модификации позволяют с высокой точностью вычислить значение числа π.

   Открытия Грегори произвели огромное впечатление на молодого Ньютона, который всегда называл Грегори в числе своих идейных предшественников. Разложение в ряд стало основным методом Ньютона и важной составной частью созданного им математического анализа. Биографы предполагают, что Грегори мог также натолкнуть Ньютона на такие его ранние открытия, как общая формула бинома и интерполяционная формула. Грегори одним из первых оценил значение научных открытий Ньютона (тогда ещё не опубликованных), вёл с ним и с его коллегами дружескую переписку и использовал ньютоновские идеи в своём преподавании.